МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

КУРГАНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

Кафедра «Автоматизация производственных процессов»

МОДЕЛИРОВАНИЕ САУ С ИСПОЛЬЗОВАНИЕМ ПРОГРАММНОГО ПАКЕТА «ELECTRONIC WORK BENCH»

МЕТОДИЧЕСКИЕ УКАЗАНИЯ

к выполнению лабораторной работы для студентов специальности 210200

Курган 2004

Кафедра «Автоматизация производственных процессов»

Дисциплина «Моделирование систем»

Составил: канд. техн. наук, доц. Лебединский Б.П.

Утверждены на заседании кафедры "____" ____ 2004 г.

Рекомендованы методическим советом университета "___" ___ 2004 г.

Целью лабораторной работы является исследование характеристик САУ при различных типах последовательных корректирующих устройств.

Основные теоретические положения

Базовым элементом для построения электронных моделей типовых динамических звеньев и систем автоматического управления является операционный усилитель. Это усилитель постоянного тока в микросхемном исполнении, который имеет два входа - инвертирующий (-) и неинвертирующий (+) - и характеризуется очень большими коэффициентом усиления и входным сопротивлением, то есть для него $k_v \approx \infty$, $r_{ax} \approx \infty$.

Как правило, реализация математических функций производится на инвертирующем входе операционного усилителя, а его неинвертирующий вход подключается к общей шине моделируемого устройства (заземляется). Типовая схема подключения приведена на рисунке 1.

Рисунок 1 – Схема операционного усилителя

С учетом принятых допущений ($k_y \approx \infty$, $r_{ex} \approx \infty$), напряжение между неинвертирующим и инвертирующим входами операционного усилителя описывается выражением

$$e_{+} - e_{-} = \frac{U_{\scriptscriptstyle Gblx}(p)}{k_{\scriptscriptstyle V}} \approx \frac{U_{\scriptscriptstyle Gblx}(p)}{\infty} = 0$$

Отсюда следует, что напряжение на инвертирующем входе приближенно равно нулю, отсюда $U_{ex}(p) \approx I_1(p) \cdot Z_{ex}(p)$. Кроме того, учитывая, что $r_{ex} \approx \infty$, можно считать $I(p) \approx 0$, следовательно, $I_1(p) \approx I_{oc}(p)$. Тогда выходное напряжение схемы может быть рассчитано по формуле:

$$U_{BbIX}(p) \approx I_{OC}(p) \cdot Z_{OC}(p) \approx I_1(p) \cdot Z_{OC}(p).$$
⁽¹⁾

С учетом (1), можно легко получить выражение для передаточной функции устройства, схема которого приведена на рисунке 6.

$$W(p) = \frac{U_{BbIX}(p)}{U_{BX}(p)} \approx -\frac{Z_{OC}(p)}{Z_{BX}(p)}.$$
(2)

Знак минус в выражении (2) указывает на то, что полярность выходного напряжения схемы обратна полярности входного напряжения.

Из курса электротехники известно, что операторные сопротивления конденсатора $Z_C(p)$ и индуктивности $Z_L(p)$ рассчитываются по формулам:

$$Z_C(p) = \frac{1}{Cp} , \qquad (3)$$

$$Z_L(p) = Lp. \tag{4}$$

В качестве примера рассмотрим вывод передаточной функции для схемы, приведенной на рисунке 2. Операторные сопротивления входной цепи и цепи обратной связи будут равны

Рисунок 2 – Модель инерционного звена

Подставляя полученные соотношения в формулу (2), получим выражение передаточной функции инерционного (апериодического) звена, взятое со знаком минус:

$$W(p) = -\frac{R_2}{R_1} \cdot \frac{1}{R_2 \cdot Cp + 1} = -\frac{k}{Tp + 1}, \ k = \frac{R_2}{R_1}, \ T = R_2C.$$

В таблице 3 (приложение 1) приведены схемы моделей различных звеньев первого порядка и соотношения для определения их параметров.

На основе моделей инерционного, пропорционального и интегрирующего звеньев (см. №№ 1, 2 и 7 в таблице 3) может быть получена модель колебательного звена с передаточной функцией:

$$W(p) = \frac{k}{T^2 p^2 + 2\xi \cdot T \cdot p + 1}.$$
(5)

На рисунке 3 приведен один из вариантов электронной модели, реализующий передаточную функцию (5). Покажем, что это так, и получим выражения для расчета параметров k, T и ξ , формулы (5).

Рисунок 3 – Модель колебательного звена

На выходе усилителя У1 происходит преобразование и суммирование напряжений по каждому из его входов. Его передаточные функции относительно входного напряжения U_{вх} и напряжения обратной связи U_{oc} представляются выражениями:

$$W_1(p) = -\frac{R_3}{R_1(R_3C_1p+1)}, W_2(p) = -\frac{R_3}{R_2(R_3C_1p+1)}$$

Полученный сигнал проходит через последовательно включенное интегрирующее звено на усилителе У2, с передаточной функцией

$$W_3(p) = -\frac{1}{R_4 C_2 p}$$

Выход усилителя У2 образует выход модели и сигнал с него через усилитель У3 с передаточной функцией $W_4(p) = -\frac{R_6}{R_5}$ поступает на второй вход усилителя У1.

На рисунке 4 приведена структурная схема.

Рисунок 4 – Структурная схема колебательного звена

Эквивалентная передаточная функция участка схемы, охваченного обратной связью, рассчитывается по выражению:

$$\begin{split} W_{\mathcal{3}KB} &= \frac{W_3(p)}{1 - W_2(p) \cdot W_3(p) \cdot W_4(p)} = \frac{\left(-\frac{1}{R_4 C_2 p}\right)}{1 - \left(-\frac{R_3}{R_2(R_3 C_1 p + 1)}\right) \cdot \left(-\frac{1}{R_4 C_2 p}\right) \cdot \left(-\frac{R_6}{R_5}\right)} = \\ &= \frac{R_2 R_5(R_3 C_1 p + 1)}{R_3 R_6 \left(\frac{R_2 R_4 R_5 C_1 C_2}{R_6} p^2 + \frac{R_2 R_4 R_5 C_2}{R_3 R_6} p + 1\right)}. \end{split}$$

Таким образом, передаточная функция электронной модели, приведенной на рисунке 3, будет равна:

$$W(p) = W_{1}(p)W_{3KB}(p) = \frac{\left(-\frac{R_{3}}{R_{1}(R_{3}C_{1}p+1)}\right)R_{2}R_{5}(R_{3}C_{1}p+1)}{R_{3}R_{6}\left(\frac{R_{2}R_{4}R_{5}C_{1}C_{2}}{R_{6}}p^{2} + \frac{R_{2}R_{4}R_{5}C_{2}}{R_{3}R_{6}}p+1\right)} = \frac{R_{2}R_{5}}{R_{1}R_{6}}\frac{1}{\frac{R_{2}R_{4}R_{5}C_{1}C_{2}}{R_{6}}p^{2} + \frac{R_{2}R_{4}R_{5}C_{2}}{R_{3}R_{6}}p+1}}{T^{2}p^{2} + 2\xi T \cdot p+1},$$

где
$$k = \frac{R_2 R_5}{R_1 R_6}$$
, (6)

$$T = \sqrt{\frac{R_2 R_4 R_5 C_1 C_2}{R_6}} ,$$
 (7)

$$\xi = \frac{1}{2R_3} \sqrt{\frac{R_2 R_4 R_5 C_1}{R_6 C_2}} \,. \tag{8}$$

 R_5 и R_6 выбираются из соотношения, что $\frac{R_5}{R_6} = 1$.

Методика проведения исследования

Некоторые особенности схем электронных моделей определяются использованием инвертирующего входа операционных усилителей. Если в модели между входом и количество содержится нечетное усилителей, выходом то выходной сигнал дополнительно сдвигается на 180° относительно сигнала объекта, подлежащего исследованию. Поэтому схемы моделей в прямой цепи между входом и выходом обязательно должны содержать четное количество усилителей, то есть при проведении экспериментальных исследований с моделями, приведенными в таблице3 (приложение 1), необходимо последовательно включать еще одну схему пропорционального звена с единичным коэффициентом передачи (инвертор напряжения).

На рисунке 5 приведена схема лабораторной установки для исследования переходных характеристик электронной модели. Величина напряжения источника U устанавливается в пределах 1 - 5 В. Наблюдение переходной характеристики и фиксация времени переходного процесса производятся с помощью осциллографа. Режим работы осциллографа - АС или DC, но не 0 (при нажатии этой кнопки сигнал на выходе канала будет равен нулю). При этом необходимо установить требуемые развертку (масштаб по оси X) и усиление по каналам A и B (масштаб по оси Y).

Если переходная характеристика имеет, например, для инерционного звена, колебательный характер или отображается на экране в виде отрезков ломаных линий, то необходимо увеличить число точек на цикле расчета, то есть изменить параметр Bode

Analysis points per cycle в пункте меню Analysis Options группы Circuit (по умолчанию этот параметр также равен 100).

Рисунок 5 – Схема установки для исследования переходных характеристик

При снятии частотных характеристик функциональный генератор следует перевести в режим синусоидального напряжения с амплитудой 1 В. Для получения амплитудной характеристики у плоттера устанавливается режим MAGNITUDE, для получения фазовой характеристики - режим PHASE. При исследовании характеристик в линейном масштабе нажимается кнопка LIN, а для логарифмического масштаба - кнопка LOG. При исследовании ЛАЧХ нижний предел изменения амплитуды устанавливается равным нулю, при исследовании ЛФЧХ - равным -90 или -180 градусов в зависимости от типа звена. На рисунке 6 приведена блок - схема экспериментальной установки для исследования частотных характеристик типовых динамических звеньев САУ.

Рисунок 6 – Схема для экспериментального исследования частотных характеристик

В лабораторной работе исследуются вариант САУ, структурная схема которой приведена на рисунке 7. Здесь звено с передаточной функцией *W*(*p*) представляет собой последовательное корректирующее устройство, а остальные звенья описываются следующими передаточными функциями:

$$W_1(p) = \frac{k_1}{T_1p+1}; W_2(p) = \frac{k_2}{T_2p+1}; W_3(p) = \frac{k_3}{T_3p+1}; W_{oc}(p) = k_{OC}.$$

Рисунок 7 – Структурная схема САУ

Постоянные времени и коэффициенты передачи этих звеньев заданы в таблице 1 (стр. 9).

На рисунке 8 приведена схема электронной модели исследуемой САУ.

Звенья нескорректированной (исходной) САУ с передаточными функциями $W_1(p)$ - $W_3(p)$ и $W_{oc}(p)$ выполнены на усилителях У2 - У5, усилитель У1 выполняет роль сумматора, задающего напряжения и сигнала обратной связи, а усилитель У6 предназначен для снятия логарифмических частотных характеристик. Входное (задающее) напряжение подводится к точке 1, а точка 4 представлявляет собой выход модели системы. Между точками 2 и 3 включается последовательное корректирующее устройство. К точке 5 подключается плоттер Боде. При исследовании нескорректированной САУ точки 2 и 3 соединяются между собой.

Примем $R_1 = R_2 = R_3 = R_4 = R_6 = R_8 = R_{10} = R_{12} = R_{13} = 100$ кОм. Граничный коэффициент передачи нескорректированной САУ рассчитывается по формуле

$$K_{TP} = \left(\frac{1}{T_1} + \frac{1}{T_2} + \frac{1}{T_3}\right) \cdot (T_1 + T_2 + T_3) - 1.$$

Исходя из полученного значения K_{zp} , рассчитывается значение коэффициента передачи κ_2 , определяются номиналы остальных сопротивлений и емкостей электронной модели нескорректированной САУ и наблюдается ее переходная характеристика. При правильном расчете всех параметров, она имеет вид незатухающих автоколебаний. Затем коэффициент передачи разомкнутой цепи САУ K_p принимается равным $K_p = 0.5 \cdot K_{zp}$ (для этого величина резистора R_3 уменьшается в два раза) и снимаются временные и частотные характеристики нескорректированной САУ.

Рисунок 8 – Наборная схема САУ

В качестве последовательных корректирующих устройств в данной лабораторной работе предлагается использовать однозвенный фильтр, а также пропорционально - интегральный (ПИ) и пропорционально - интегрально - дифференциальный (ПИД) регуляторы.

Однозвенный фильтр представляет собой инерционное форсирующее звено с передаточной функцией $W_{\phi} = \frac{\tau_{\phi} p + 1}{T_{\phi} p + 1}$. Схема его электронной модели приведена на рис.

9. Форсирующее звено реализовано на усилителе У1, причем постоянная времени

$$\tau_{\phi} = R_{1\phi} \cdot C_{1\phi}$$
, а коэффициент передачи $k_{\phi 1} = -\frac{R_{2\phi}}{R_{1\phi}}$

Инерционное звено реализовано на усилителе У2. При этом постоянная времени $T_{\phi} = R_{4\phi} \cdot C_{2\phi}$ и коэффициент передачи $k_{\phi 2} = -\frac{R_{4\phi}}{R_{3\phi}}$. Так как коэффициент передачи фильтра $k_{\phi} = k_{\phi 1} \cdot k_{\phi 2} = 1$ необходимо принять $R_{1\phi} = R_{2\phi} = R_{3\phi} = R_{4\phi} = 100$ кОм. Во всех вариантах задания значение постоянной времени принимается равным $T_{\phi} = 0,5$ мс, следовательно, $C_{2\phi} = \frac{T_{\phi}}{R_{4\phi}} = \frac{0.0005}{100 \cdot 10^3} = 5$ нФ. Постоянная времени τ_{ϕ} поочередно принимает значения, равные одной из постоянных времени нескорректированной САУ и, в соответствии с ее значением, рассчитывается величина $C_{2\phi} = \frac{\tau_{\phi}}{R_{1\phi}}$.

Рисунок 9 – Модель инерционного звена

ПИ - регулятор представляет собой изодромное звено с передаточной функцией $W_{\Pi H}(p) = k_{\Pi H} \frac{T_{\Pi H} \cdot p + 1}{p}$.

Схема его электронной модели показана на рис. 10. Причем постоянная времени $T_{\Pi\Pi} = R_{2\Pi\Pi} \cdot C_{\Pi\Pi}$ и коэффициент передачи $k_{\Pi\Pi} = \frac{R_{4\Pi\Pi}}{R_{1\Pi\Pi} \cdot R_{3\Pi\Pi} \cdot C_{\Pi\Pi}}$. В лабораторной работе $k_{\Pi\mu} = 1c^{-1}$. Следует принять $R_{1\Pi\mu} = R_{3\Pi\mu} = 100$ кОм, $R_{2\Pi\mu} = 1$ кОм значения $R_{4\Pi\mu}$ и $C_{\Pi\mu}$ рассчитываются в соответствии с заданным значением $T_{\Pi\Pi}$:

$$C_{\Pi\Pi} = \frac{T_{\Pi\Pi}}{R_{2\Pi\Pi}},$$

$$R_{4\Pi\Pi} = R_{1\Pi\Pi} \cdot R_{4\Pi\Pi} \cdot C_{\Pi\Pi} = \frac{R_{1\Pi\Pi} \cdot R_{3\Pi\Pi}}{R_{2\Pi\Pi}} \cdot T_{\Pi\Pi} = 10^7 \cdot T_{\Pi\Pi}.$$

Рисунок 10 – Модель ПИ-регулятора

ПИД – регулятор - это звено с передаточной функцией $W_{\Pi M \Pi}(p) = k_{\Pi M \Pi} = \frac{(T_{\Pi \Pi M \Pi} \cdot p + 1)(T_{2\Pi M \Pi} \cdot p + 1)}{p}$. Схема электронной модели этого регулятора показана на рис. 11, причем постоянные времени $T_{\Pi M \Pi} = R_{\Pi M \Pi} C_{\Pi M \Pi}; T_{2\Pi M \Pi} = R_{2\Pi M \Pi} C_{2\Pi M \Pi}$ и коэффициент передачи $k_{\Pi M \Pi} = \frac{R_{4\Pi M \Pi}}{R_{\Pi M \Pi}}$. В лабораторной работе постоянные времени $T_{1\Pi M \Pi}$ и $T_{2\Pi M \Pi}$ принимаются равными <u>наибольшей</u> и <u>средней</u> постоянным времени нескорректированной САУ, а значение $k_{\Pi M \Pi}$, задается из таблице 3. Сопротивления $R_{I n M \Pi} = R_{2 \ n M \Pi} = R_{3 \ n M \Pi} = 100$ кОм, а номиналы остальных элементов рассчитываются в соответствии с заданными значениями $T_{1\Pi M \Pi}, T_{2\Pi M \Pi}, k_{\Pi M \Pi}$.

$$C_{1\Pi HII} = \frac{T_{1\Pi HII}}{R_{1\Pi HII}} = \frac{T_{1\Pi HII}}{10^5} C_{2\Pi HII} = \frac{T_{2\Pi HII}}{R_{2\Pi HII}} = \frac{T_{2\Pi HII}}{10^5},$$

$$R_{4\Pi HII} = k_{\Pi HII} R_{1\Pi HII} R_{3\Pi HII} C_{2\Pi HII} = 10^{10} \cdot k_{\Pi HII} \cdot C_{2\Pi HII}$$

$$R_{1\Pi HII} = \frac{C_{1\Pi HII}}{R_{1\Pi HII}} R_{2\Pi HII} R_{2\Pi HIII} = \frac{R_{1\Pi HII}}{R_{2\Pi HIII}} R_{2\Pi HIII} R_{2\Pi HIII}$$

Рисунок 11 – Модель ПИД-регулятора

Задание на лабораторную работу

1 Исследование характеристик нескорректированной САУ

1.1 В соответствии с вариантом исходных данных (таблица 1) рассчитать граничное значение коэффициента передачи K_{rp} , определить значение коэффициента передачи второго звена $K_2 = \frac{K_{ep}}{k_1 \cdot k_3 \cdot k_{oc}}$, рассчитать параметры электронной модели и пронаблюдать её переходную характеристику на границе устойчивости. Если она имеет

вид незатухающих колебаний, то продолжить выполнение программы работы, в противном случае – уточнить параметры модели.

Вариант	Т _{1, мс}	Т2, мс	Т ₃ , мс	\mathbf{k}_1	k ₂	k _{oc}
1	15	60	200	2	5	0,5
2	20	50	200	5	2	0.6
3	10	40	120	3	2	0,5
4	10	30	80	4	2,5	0,5
5	10	25	100	5	2.5	0.5
6	8	32	95	3	2	0,7
7	8	24	72	4	2	0,7
8	8	30	80	5	2,5	0,7
9	7	28	84	3	2,5	0.6
10	7	24	63	4	2	0.6
11	6	15	60	5	2	0.6
12	6	24	72	3	2,5	0.6
13	7	18	54	4	2,5	0,7
14	5	12	50	5	2	0,7
15	5	20	60	3	2	0.7
16	5	15	45	4	2.5	0.7
17	5	10	40	5	2.5	0,7
18	4	12	48	3	2.5	0.6
19	10	50	100	4	4	0.6
20	3	32	80	5	2.5	0,6
21	30	120	360	3	2.5	0.5
22	30	90	270	2	4	0.5
23	20	50	200	5	2	0,5

Таблица 1 – Варианты исходных данных

1.2 Принять значение коэффициента передачи разомкнутой цепи $K_p = 0,5K_{rp}$ путем уменьшения в два раза номинала резистора R_3 .

1.3 Подавая на вход 1 модели через ключ от источника постоянного напряжения задающее воздействие величиной 4 В, с помощью осциллографа снять переходную характеристику нескорректированной САУ. Определить время переходного процесса t_{nn} и перерегулирование δ .

1.4 Подавая на вход 1 модели от задающего генератора синусоидальное задающее воздействие, с выхода 5 с помощью плоттера снять ЛАЧХ и ЛФЧХ нескорректированной САУ, определить частоты среза ω_{cp} , запасы устойчивости по амплитуде ΔG и фазе $\Delta \phi$.

2 Исследование характеристик САУ с фильтром

- 2.1 Рассчитать для заданного варианта параметры однозвенного
 - фильтра для значения $\tau_{\phi} = T_3$.
- 2.2 Включить между точками 2 и 3 однозвенный фильтр, приняв значение его постоянной времени $\tau_{\phi} = T_I$.

2.3 Повторить выполнение п.п. 1.3, 1.4, сняв при этом переходную характеристику, ЛАЧХ и ЛФЧХ скорректированной САУ с фильтром. Определить время переходного процесса t_{nn} , перерегулирование, определить частоты среза ω , запасы устойчивости по амплитуде ΔG и фазе $\Delta \phi$.

3 Исследование характеристик САУ с ПИ - регулятором

3.1 Рассчитать для заданного варианта параметры ПИ - регулятора для значений $k_{\Pi H} = 1$, $T_{\Pi H} = T_1 T_{\Pi H} = T_2$ и $T_{\Pi H} = T_3$.

3.2 Включить между точками 2 и 3 ПИ - регулятор и установить значение ею постоянной времени $T_{\Pi M} = T_I$.

3.3 Повторить выполнение п.п 1.3, 1.4, сняв при этом переходную характеристику ЛАЧХ и ЛФЧХ скорректированной САУ с ПИ -регулятором. Определить время переходного процесса t_{nn} , перерегулирование, определить частоты среза ω_{cp} , запасы устойчивости по амплитуде ΔG и фазе $\Delta \phi$.

4 Исследование характеристик САУ с ПИД - регулятором

4.1 Рассчитать для заданного варианта параметры ПИД - регулятора, принимая значения $T_{1\Pi N\Pi}$ и $T_{2\Pi N\Pi}$ равными максимальной и средней постоянным времени нескорректированной САУ и значений $k_{\Pi N\Pi}$, выбранным из таблице 2.

Вариант	k _{ПИДI}	k _{ПИД2}	k _{ПИД3}	k _{ПИД4}	Вари- ант	k _{пид1}	k _{ПИД2}	k _{ПИД3}	k _{ПИД4}
1	11,5	5,725	2,862	1,431	13	35.41	17.7	8,852	4,426
2	10.4	5,195	2.597	1.3	14	41.4	20,7	10,35	5,175
3	18.46	9.231	4,615	2.308	15	41,4	20.7	10,35	5.175
4	24,24	12,12	6,061	3,03	16	41,4	20,7	10.35	5.175
5	20.78	10,39	5,185	2,6	17	41,4	20,7	10,35	5,175
6	23.24	11,62	5,81	2.9	18	55,75	25,88	12,94	6,47
7	28,12	14,06	7,03	3.515	19	20,7	10,35	5.175	2,588
8	25.97	12.99	6.484	3,247	20	69	34,5	17.25	8.625
9	26.37	13,19	6,593	3,287	21	6,9	3,45	1.725	0,863
10	32,14	16,07	8,036	4.018	22	6.9	3.45	1.725	0,863
11	34,63	17,32	8,658	4,33	23	10,35	5,175	2.588	1,794
12	30,77	15,38	7,692	3,846	24	10,35	5,175	2.58	1.794

Таблица 2 – Варианты исходных данных для ПИД-регулятора

4.2 Включить между точками 2 и 3 ПИД - регулятор, установить значения его постоянных времени $T_{1\Pi N\Pi}$ и $T_{2\Pi N\Pi}$ равные постоянным времени T_2 и T_1 нескорректированной САУ, и значение коэффициента передачи $k_{\Pi N\Pi} = k_{\Pi N\Pi}$.

4.3 Повторить выполнение п.п. 1.3, 1.4, сняв при этом переходную характеристику, ЛАЧХ и ЛФЧХ скорректированной САУ с ПИЛ - регулятором. Определить время переходного процесса t_{nn} , перерегулирование δ , определить частоты среза ω_{cp} , запасы устойчивости по амплитуде ΔG и фазе $\Delta \phi$.

5 Проверка расчетов в математическом пакете MathCAD

5.1 Рассчитать, используя систему MathCAD, переходные характеристики скорректированной САУ (одну из трех по-выбору), её ЛАЧХ, ЛФЧХ. Определить время переходного процесса t_{nn} и перерегулирование δ , запасы устойчивости по амплитуде ΔG и фазе $\Delta \phi$.

5.2 Сравнить экспериментальные данные с расчетными.

Отчет должен содержать:

- 1. Титульный лист.
- 2. Цель лабораторной работы.
- 3. Задание.
- 4. Расчетная часть.
 - 4.1. Рассчитанные параметры корректирующих звеньев и САУ.
 - 4.2. Графическое представление характеристик САУ: ЛАЧХ и ЛФЧХ.
 - 4.3. Экспериментально полученные значения времени переходного процесса, перерегулирование, частоты среза, запасы устойчивости по амплитуде ΔG и фазе Δφ.
 - 4.4. Результаты проверки расчетов в системе MathCAD.
- 5. Выводы.

Контрольные вопросы

- 1. При каких условиях достигаются наилучшие показатели качества регулирования в статической САУ?
- 2. Какое новое качество приобретает САУ при использовании в ней в качестве корректирующих устройств ПИ- и ПИД- регуляторов?
- 3. Возможно ли с помощью ПИД регулятора настроить САУ на технический оптимум, и какие показатели качества регулирования при этом будут достигнуты?

4. Возможно ли с помощью последовательных корректирующих устройств сделать неустойчивую САУ устойчивой, и если возможно, то почему?

5. Как изменятся параметры САУ с ПИ-регулятором при настройке его на постоянную времени T_{ПИ}, равную T₁ или T₂?

Отразить влияние фильтра, ПИ-, ПИД- регуляторов на статические и динамические характеристики САУ.

Приложение А

Пример расчета некоторых характеристик нескорректированной САУ с помощью системы MathCAD

```
k1 := 2
T1 := 15 \cdot 10^{-3}
k3:=5
T2 := 60 \cdot 10^{-3}
T3 := 200 \cdot 10^{-3}
koc := 0.5
                     100 \cdot 10^{3}
    R1
                     100 \cdot 10^3
    R2
                     100 \cdot 10^{3}
    R3
                     100 \cdot 10^{3}
    R4
    R6
             := | 100 \cdot 10^3
    R8
                    100 \cdot 10^{3}
   R10
                     100 \cdot 10^3
   R12
                     100 \cdot 10^{3}
   R13
                     100 \cdot 10^{3}
R9 := k3 \cdot R8
R5 := k1 \cdot R4
R11:=koc \cdot R10
R9 = 5 \times 10^5
R5 = 2 \times 10^5
R11 = 5 \times 10^4
C1 := \frac{T1}{R5}
C3 := \frac{T3}{R9}
C1 = 7.5 \times 10^{-8}
C3 = 4 \times 10^{-7}
           \left(\frac{1}{T1} + \frac{1}{T2} + \frac{1}{T3}\right) \cdot (T1 + T2 + T3) - 1
kgr :=
kgr = 11.646
        \frac{kgr}{k1\cdot k3\cdot koc}
k2:= -
k2 = 2.329
R7 := k2 \cdot R6
R7 = 2.329 \times 10^{5}
C2 := \frac{T2}{R7}
C2 = 2.576 \times 10^{-7}
```

$$\rightarrow (T_{1}p + 1)(T_{2}p + 1)(T_{3}p + 1) + koc \cdot k_{1} \cdot k_{2} \cdot k_{3} \operatorname{coeffs} , p \rightarrow \begin{pmatrix} \frac{11}{40} \\ \frac{159}{10000} \\ \frac{9}{50000} \end{pmatrix}$$

$$a := \begin{pmatrix} 1 + koc \cdot k_{1} \cdot k_{2} \cdot k_{3} \\ T_{1} + T_{2} + T_{3} \\ T_{1} \cdot T_{2} + T_{1} \cdot T_{3} + T_{2} \cdot T_{3} \\ T_{1} \cdot T_{2} \cdot T_{3} \end{pmatrix}$$

$$A(p) := a_{3}p^{3} + a_{2}p^{2} + a_{1} \cdot p + a_{0}$$

$$Q(p) := \frac{d}{dp}A(p)$$

$$Q(p) \Rightarrow \frac{27}{50000} \cdot p^{2} + \frac{159}{5000} \cdot p + \frac{11}{40}$$

$$B(p) := k_{1} \cdot k_{2} \cdot k_{3}$$

$$p := polyroots(a)$$

$$p = \begin{pmatrix} -80.206 \\ -4.064 + 29.316i \\ -4.064 - 29.316i \end{pmatrix}$$

$$g := 5$$

$$y0 := g \cdot \frac{B(0)}{A(0)}$$

$$y0 = 9.209$$

$$k := 0.2$$

$$yp(t) := g \cdot \sum_{k} \frac{B(p_{k}) \cdot \exp(p_{k} \cdot t)}{p_{k} \cdot Q(p_{k})}$$

yg(t) := y0 + yp(t)

t := 0, 0.0001.2

Приложение Б

Схемы моделей различных динамических звеньев первого порядка

	,		
N	Тип звена	Электронная модель	Передаточная функция и ее па- раметры
1	2	3	4
1	Пропорцио- нальное (бе- зынерцион- ное)	R1	W(p) = -k; $k = \frac{R_2}{R_1}.$
2	Инерционное (апериодичес- кое первого порядка)		$W(p) = -\frac{k}{Tp+1};$ $k = \frac{R_2}{R_1},$ $T = R_2C.$
3	Форсирующее		W(p) = -k(Tp+1); $k = \frac{R_2}{R_1},$ $T = R_1 \cdot C.$
4a	Инерционное форсирующее $(T_1 > T_2)$	$\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	$W(p) = \frac{-k(T_1p+1)}{T_2p+1};$ $k = \frac{R_3}{R_1},$ $T_1 = (R_1 + R_2)C,$ $T_2 = R_2C$
46	Инсрционное форсирующее $(T_1 < T_2)$	R1	$W(p) = \frac{-k(T_1p+1)}{T_2p+1};$ $k = \frac{R_3}{R_1},$ $T_1 = R_2C,$ $T_2 = (R_2 + R_3)C$

Таблица 3

Таблица 3 - продолжение

1	2	3	4
5	Дифференци- рующее		W(p) = -Tp; T = RC.
6	Инерционное дифференци- рующее	R^{2}	$W(p) = \frac{-T_1 p}{T_2 p + 1};$ $T_1 = R_2 \cdot C,$ $T_2 = R_1 \cdot C.$
7	Интегрирую- щее		$W(p) = -\frac{1}{Tp};$ $T = RC.$
8	Изодромное	$C = R^2$	$W(p) = -\frac{T_1p+1}{T_2p},$ $T_1 = R_2C,$ $T_2 = R_1C.$

Приложение В Основы электронного моделирования в пакете electronic workbench 6.20.

Функциональный (задающий) генератор

Функциональный (задающий) генератор является источником сигналов синусоидальной, треугольной и прямоугольной формы. На рисунке 12 показана его лицевая панель и схема его подключения.

Выбор типа сигнала производится нажатием соответствующей кнопки. Установка необходимой частоты (FREQUENCY), длительности импульса (DUTH CYCLE), измеряемой в процентах, его амплитуды (AMPLITUDE) и постоянной составляющей (OFFSET) осуществляется стрелками прокрутки. Частота может изменяться от 0,1 Гц до 999 Мгц, амплитуда - ог 1 мВ до 100 кВ.

При выполнении лабораторных работ величина параметра DUTH CYCLE принимается равной 50 %, а параметра OFFSET - равной нулю.

Осциллограф

Предназначен для наблюдения и измерения двух исследуемых сигналов (А и В) одновременно. Если при подключении каналов А и В к электрической цепи выбрать цветные провода, то лучи А и В будут окрашены в те же цвета.

На рисунке 13 показана лицевая панель осциллографа. Каждый канал (CHANNEL) имеет кнопки подключения переменного (AC) и постоянного (DC) входных сигналов, а также кнопку закорачивания входа. Амплитуда входного сигнала и его сдвиг (Y PSS) регулируются стрелками прокрутки. Для обоих каналов также стрелками прокрутки устанавливается общее время развертки (TIME BASE) и смещение (X PSS). Кроме этого, в блоке временной развертки имеются кнопки переключения режима развертки (при выполнении лабораторных работ устанавливается развертка по времени - режим Y/T). Также имеется триггер синхронизации со своим входом и органами управления (при выполнении лабораторных работ устанавливается режим автоматической синхронизации АUTO) и клемма заземления GROUND.

Рисунок 13

На рисунке 14 приведена схема подключения осциллографа при проведении измерений

Рисунок 14

Построитель кривых Боде (плоттер Боде)

Построитель кривых Боде (плоттер Боде) предназначен для снятия амплитудных и фазовых частотных характеристик моделируемого устройства.

На рисунке 15 изображена внешняя панель плоттера Боде. На ней расположены кнопки переключения режима измерения амплитуды (MAGNITUDE) и фазы (PHASE) сигнала в линейном (L1N) и логарифмическом (LOG) масштабах. С помощью кнопок прокрутки можно изменять диапазон изменения амплитуды или фазы (VERTICAL) и частоты (HORIZONTAL), причем нижняя шкала соответствует нижнему пределу диапазона, а верхняя – верхнему.

Bode Plotter-XBP1	
	Magnitude Phase Save Set Vertical Horizontal Log Lin Log F 35 dB F 1 I -40 dB I 1 mHz 12.802 dB 986.279 mHz
	+ ⓒ ln ⓒ - + ⓒ Out ⓒ -

Рисунок 15

Кроме этого, на панели имеются кнопки 🛋 и 🏓, при нажатии и удержании которых по экрану плоттера перемещается вертикальная линия, предназначенная для измерения амплитуды, фазы и частоты. При ее пересечении с кривой Боде на табло, расположенных справа, высвечиваются координаты этой точки.

На рисунке 16 приведена схема подключения плоттера Боде к схеме электронной модели и функциональному генератору, который в этом случае должен вырабатывать синусоидальный сигнал.

К схеме электронной модели

Рисунок 16

Лебединский Борис Петрович

МОДЕЛИРОВАНИЕ САУ С ИСПОЛЬЗОВАНИЕМ ПРОГРАММНОГО ПАКЕТА «ELECTRONIC WORK BENCH»

Методические указания к выполнению лабораторной работы для студентов специальности 210200

Редактор Т.В. Тимофеева

Подписано в печать		Бумага тип. № 1
Формат 60х84 1 /16		Учизд.л. 1,25
Заказ	Усл. печ. л. 1,25	Цена свободная
	Тираж 50	
TT TC		

Издательство Курганского государственного университета. 640669, г. Курган, ул. Гоголя, 25. Курганский государственный университет, ризограф.